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Abstract— Properly tuning simulators to achieve good levels
of performance when transferring policies from simulation to
reality is critical for real world robotics. This task, however, is
time consuming and difficult to perform well since it is typically
done by hand, relying on heuristics, domain knowledge, and
trial-and-error. In this work we present an approach for
automatically tuning robot simulators using Deep Learning.
Our approach efficiently generates tens of thousands of ran-
domized simulators and identifies which of these parameters is
best suited to represent the real world. Once identified, these
neighboring simulators can be used to quickly and reliably
generate an effective walking policy that works in the real
world.

I. INTRODUCTION

The development of novel robot platforms inevitably
requires a large amount of work with simulators. These
simulators serve a critical role by allowing researchers to
develop and test algorithms without needing to risk damaging
the often expensive and relatively fragile robot. Thus, the
development of, and work to ensure the accuracy of these
simulators is a crucial task.

Reflecting the critical nature of building and refining
simulators, there have been numerous works that sought
to improve the state of the art for robot simulators
[11[2][3][4][5][6]. These works tend to focus on improving
the precision of the simulator overall, including such com-
plexities as contact dynamics [7]. These studies however
always leave the arduous work of tuning each individual
simulator to work with the specific robot desired. Leaving
the last step to the user is done with good reason. It is very
difficult to create a simulator that can take in any model of
a robot and then automatically tune this model to perfectly
reflect the dynamics of the real robot it seeks to model a
priori. Thus, in order to properly execute this tuning some
prior information about the dynamics of the real robot is
required.

Traditionally, in order to acquire this prior information a
roboticist needs to carefully measure and note the specifi-
cations of each of its motors, the torques, friction values,
speeds, delays, etc. as well as correctly tune the 3D model
that accompanies all of this information to have the correct
weights, moments of inertia, etc. [1][8]. This process is not
trivial and often can be very time consuming and prone to
errors, requiring trial-and-error to iteratively refine estimates
until tasks performed in simulation translate well enough to
the real world. Simply put, the traditional process requires a
lot of man-hours to engineer and tune the simulation as well
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Fig. 1.  Overview of our approach. (a) We start by creating a large
amount (10,000) of simulator configurations. (b) Once these configurations
are created we produce a small dataset and train a dynamics model on each
of them. (¢) These dynamics models are used to produce the distance values
necessary to create a graph. (d) The real robot is then used to produce a
dataset and a corresponding dynamics model. (e) This information is used
in conjunction with the existing graph to identify the nearest simulation
configurations to the real robot. (f) These proximal simulators are used to
train a policy which produces a forward gait.

as a lot of machine-hours as the robot has to continually try
and fail to execute tasks while iterating on the parameters
[91[10].

In this work, we present an algorithm to automatically
find these simulation parameters as can be seen in Figure
We collect a dataset of actions performed by the real
robot and a superset of these datasets from thousands of
different simulations each with different parameters. Our
algorithm uses deep learning to quickly identify which of
these simulated datasets most closely matches the dynamics
of our real robot. We then use these close simulated results
to train our robot to perform a task without any manual
tuning of the simulator parameters. We demonstrate that our
approach can quickly and efficiently identify parameters that
work very closely to those of a manually tuned simulator,
and work well enough to allow our robot to learn a forward
gait in simulation that transfers well to the real world.



II. RELATED WORKS
A. Automatic Tuning of Simulators

Current solutions to the problem of accurately tuning
simulators for transferring policies from simulation to the
real world are often based on domain randomization [11].
This is the practice of training a model with a wide range
of simulated environments by randomizing the simulator.
Prior works have randomized the dynamics of the system
[11[12][13][14], the physical environment [15], and the ren-
dering of the system [11]. Tan et al. [1] demonstrated this
by learning successful gaits using the Minitaur quadruped
from Ghost Robotics [16] by randomizing a set of parameters
affecting the dynamics of the system and by heuristically
defining the ranges in which that randomization would take
place.

Typically, when using domain randomization, one must
use heuristics, prior domain knowledge, and trial-and-error to
hand-engineer the range of simulation parameters that one is
training on. As one increases the range within which random-
ization is performed it has the trade-off of better performance
for computational expense. Thus, domain randomization is
reliable but, since the control process has to be tested across
all of the randomized simulated environments, it demands a
large computational load.

Imitating reference motions has also been proved as a
robust general approach for transferring dynamics from
the real world to simulation [17][18]. Peng et al. [14]
demonstrated an approach for imitating reference motions
in animals to allow for sim-to-real transfer of quadruped
locomotion on Unitree’s Laikago robot [19]. However, the
setup is costly and the domain adaptation step still requires
heuristics and prior domain knowledge to hand-engineer the
range of simulation parameters that one is training on.

Allevato et al. propose TuneNet [20], a one-shot residual
tuning for system identification and sim-to-real robot task
transfer. It takes as input observations from two different
models and, by estimating the parameter gradient landscape,
it iteratively updates parameters to converge on simulation
parameters.

Recently, Du et al. proposed a method for automatically
tuning simulator system parameters to match the real world
using real world data from RGB images [21]. Here, auto-
tuning of simulation parameters is done by iteratively shifting
them to approach that of real world RGB images by predict-
ing whether a given parameter is higher, lower, or close to the
real world values. Domain randomization is later applied by
restricting randomization to a distribution around the “close
enough” parameters that have been determined.

Similarly, the recent SimOpt work [13] also leverages real
world data to iteratively shift the distribution of simulation
parameters to perform domain randomization that is more
reliable. However, they rely on continuous real world data
collection prior to every new domain randomization iteration,
which hinders the desirable quality of limiting the amount of
machine-hours to protect the often fragile robot. Moreover,
while this method is effective for robotic arm tasks suck

as Cabinet Slides, it is challenging to apply these methods
to locomotive tasks due to the difficulty of continuously
collecting data and resetting the experiment.

Our approach allows us to begin with a very large va-
riety of environments, thus, a large range of simulation
parameters, as we do not intend to use all of them. We
train a model on a small dataset of actions performed on
the real robot, which allows us to quickly discern which
simulated datasets are most similar to our real world model
and, thus, we only generate a small amount of simulated
data from each simulator. This can be done very quickly
and is conspicuously parallelizable, eliminating the trade-
off for training on large ranges of simulation parameters for
great performance. While most of the previous work in this
field has been in trying to properly define a realistic domain
on which to perform randomization, our system avoids that
problem altogether, allowing sim to real transfer on large
scale domain randomization without being computationally
expensive.

Fig. 2. Fully assembled robot

III. ROBOT DESIGN

The robot we designed is based on a mammal-type
quadruped leg configuration [22], similar to that of the MIT
Mini Cheetah [23] or Boston Dynamics Spot [24] robot
designs. Figure [2] shows a picture of the assembled physical
robot. It weighs roughly 3.6 kg, with 0.15 m and 0.16 m
link-lengths for the upper and lower links respectively, and
0.23 m between the front and rear legs. All components,
excluding an acrylic sheet for the main body link and oft-
the-shelf parts, are 3D printed. It was designed to be a robust
& low-cost robotic platform which is easy to assemble and
service.

A. Mechanical Design

The key functional requirements in the design of our robot
were simplicity of assembly and servicing, low-mass, and
low-cost.



The main body link of the robot consists of a Smm thick
laser-cut acrylic sheet with an FDM 3D printed cover that
houses the hardware and electronics as well as the ‘armpit’
joint motors for each leg, shown in Figure 3(a)] The battery
is located in the underside of the acrylic sheet so as to keep
the center of mass of our robot low - it is fastened to the
body with industrial strength Velcro for ease of replacement.

All leg links were 3D printed using desktop FDM 3D
printers. To provide the legs with increased mechanical
properties, we post-processed the links by applying a coating
of XTC-3D™ epoxy resin. Links were also added M2 and
M3 threaded thermal inserts to provide secure fastening to
the motor brackets.

Each of the four legs has 3-DOF, one controlling roll
(Carmpit’) and two controlling pitch (’shoulder’ & ’elbow’)
- see Figure 3(a)] - with respect to the axis describing the
forward-direction of the robot. The joints have a range of
motion of ~90°, 175° and 225°, respectively.

B. Hardware & Electronics

The main body link houses all the hardware and electronic
components excepting the servo motors in the legs, as seen
in Figure 3(b)] The robot is powered by a 12 V, 72 W-h Li-
Ion battery. All motors and control unit are powered by the
same battery, with a DC-to-DC converter to step down the
voltage and provide electrical isolation between the power
electronics and the computer.

All joints are driven by LewanSoul LX-16A Serial Bus
Servo motors, which provide 17 kg-cm of torque when pow-
ered with 7.4 V and can be controlled with 0.24° accuracy.

Control of the robot is performed using a Raspberry
Pi 4 Model B. The computer communicates with a Bus
Servo Controller breakout board which directly connects
and controls the 12 Servos on the robot. Accelerometer and
gyroscope data is collected with the Raspberry Pi Sense
HAT attachment board. We control the robot by remotely
accessing the on-board Raspberry Pi via WIFI from a laptop
computer.

C. Robot Simulator

We built a physics simulation of our robot - as seen in
Figure - using PyBullet [25], a Python module that
extends the Bullet Physics Engine with machine learning
and robotics capabilities. Bullet solves the equations of
motion for articulated rigid bodies and allows one to adjust
parameters to set physical constraints such as contact, friction
coefficients and joint torques & velocities.

To simulate the robot, we created a Unified Robot De-
scription Format (URDF) [26] file for our design using
data from our Computer Aided Design (CAD) model given
specifications for off-the-shelf parts and assuming uniform
density for 3D printed parts.

We set up an environment in which we tuned the follow-
ing parameters for a baseline simulation environment that
approached the real robot:

1) Number of simulated actions per second
2) Lateral friction between the robot links and the floor

(a) Labeled joint names - A: armpit; (b) Labeled electronic components
B: shoulder; C: elbow

.

(c) URDF of our robot in PyBullet
environment

Fig. 3. Renderings with labeled joints & components and URDF or robot

3) Maximum joint torques

4) Maximum joint velocities

5) Joint limit positions

6) Maximum joint delta positions allowed

7) Motor Noise

8) Link lengths, masses & moments-of-inertia

9) Gravity

These were the same parameters that we sought to auto-
matically tune with our approach.

IV. AUTOMATIC TUNING OF A SIMULATOR
A. Individual Model Design

In order to automatically tune the simulator we first collect
data on both real and a variety of simulated robots. This data
is used to train Deep Learning neural networks to model
the dynamics of each of these robots and evaluate which
simulator most closely approximates the real robot. In order
to do this we need to establish a neural network that will do
the modeling.

We use a neural network with 3 layers each having a
hidden size of 128. This network is trained with the Adam
[27] optimizer and uses ReLLU [28] activations between the
layers. The model is given an input data corresponding to the
current state and action sy, a; and is expected to predict the
next state ;1. The state in this case captures a large amount
of information about the robot such as its motor positions,
roll, pitch, yaw, and velocity of the body. The action is
a vector that is passed to the robot’s motors to command
them to move to different positions. All this information
is sufficient to predict the next state and the network that
models this can be considered a dynamics model in that it
is modeling the dynamics of this system. These models are
all trained using Nvidia 1080 TT and Nvidia 2080 TI GPUs.



B. Detecting Similarity

In traditional domain randomization tasks which seek to
accomplish a similar goal, a gait would be produced through
testing on a wide variety of different sets of environments
[11]. This approach is robust but requires a significant
computational load as the control process has to be repeated
across each of the randomized environments.

In our approach we similarly begin with a large variety of
environments but as we do not intend to use all of them we
can generate a very large set of environments relative to the
computation power available. We assume that by creating a
sufficiently broad set of parameters, some of them are likely
to be close to the real world, an assumption common to
domain randomization as a whole. As our approach solely
relies on generating a small amount of simulated data from
each simulator it can be done very quickly and is eminently
parallelizable.

Once these datasets generated from the simulators are fully
collected we then train a deep neural network to model the
dynamics of each of these datasets. The details of these
models can be seen in Section [[V-Al Once all of these models
are trained we can use them to evaluate the distance between
two different datasets. This distance can be expressed as:

Ly(b) + Ly(a)
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)

C. Identifying the Nearest Simulators

This distance function outlines the relative symmetric
distance between each of the two robots. By evaluating the
loss of model a on dataset b and vis versa we describe
the cumulative difficulty these models have describing their
counterpart. This difficulty is inversely correlated with the
similarity between these two models. As a result by dividing
the performance on their counterpart’s dataset by the diffi-
culty on their own we describe the relative performance of
these two models normalized by how difficult their own task
is.

This distance value can be used as to produce an undi-
rected graph. In order to produce this graph we construct
it in a manner very similar to the Hierarchical Navigable
Small Worlds Graphs as described in [29]. In our approach
we first seek to find the K-Nearest-Nodes to our new node n,
as outlined in Algorithm |1} we begin by selecting a random
node a from our graph GG. Once chosen we then go through
all of the edges E, of node a and compute the distance
d(n,a). We then find the neighbor of node a which we call
node b that has the lowest distance to node n. Once found
we repeat this process with node b. This continues until the
chosen node being evaluated exists at a local minimum.

This process is an approximate k-nearest neighbors (KNN)
method and as it is approximate it can result in suboptimal
outcomes if the graph is not convex with respect to the dis-
tance problem. In order to mitigate this problem in practice,
we repeat the algorithm 4 times and take the best & choices.
For all experiments k = 5. This significantly reduces the

probability of a local minimum appearing and results in a
more robust selection.

Algorithm 1 K-Nearest-Nodes
Require: a graph G, a node n to test against
Ensure: |G| >0
N = {} We initialize a set of the top k nearest neighbors
while |N| < k do
a = a random node from G
S = {} The set of visited nodes
while ¢ ¢ S do
V = {k € E, with the lowest d(n,i)Vi € E,}
N = the k elements with the lowest d in N UV
b = the node with the mind(n, j) Vj € V
if d(n,b) < d(n,a) then
a+b
end if
end while
end while

Fig. 4. An example of our KNN algorithm in practice. The first node
(1) is selected randomly and then each of its neighbors are tested to reveal
their distance. This process is continued until all surrounding nodes have a
higher distance score than the chosen node.

Our approach results in an expected O(log(n)) which
allows for a significant number of robots to be evaluated.
Furthermore, the high degree of accuracy present in the
approximation means that the chosen nodes are nearly always
close to the real dynamics of the system we choose to model.
These two properties combined result in a system that can
quickly evaluate a number of simulator configurations and
detect those that would be closest to a collected dataset from
the robot.
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The three main tests of the efficiency and effectiveness of our approach. These charts show that our approach is significantly faster and more

efficient than brute force while approaching the effectiveness of it. Whereas a random choice has virtually no effectiveness demonstrating that this is not

a trivial task.

D. Testing Our Approach

In order to evaluate our approach we use the simulators
to find a walking policy that works in the real world on the
physical robot without any manual tuning of the simulator.
In order to produce this walking gait we use a Hill Climber
[30] to find the parameters necessary for a sinusoidal gait.
These sinusoidal gaits use a few parameters to modulate the
motors of the robot in a sinusoidal fashion. These gaits have
been frequently used in the past and are robust and very
efficient [31][32][33].

In order to use this Hill Climber we test each of the
candidate gaits on all of the k-nearest simulators. Any gait
that successfully performs a gait on all of the k-nearest
simulators is very likely to succeed in the real world. As
such, our approach pulls from the traditional approach of
domain randomization and is able to achieve good results
without the need to test gaits on thousands of simulators.

V. RESULTS
A. Assessing Our Algorithm

We assess our algorithm across three key tests the results
of which can be seen in Figure [5] These three tests assess
how likely it is that this algorithm will be useful in determin-
ing which of the identified nearest nodes in the graph will
be a good approximation for our new robot. These metrics
can be summarized as those that measure the efficiency of
our algorithm, and thus how broad a search space we can
cover, and the effectiveness of our algorithm representing
how well our choices will be within the large search space.
These two metrics are both crucial as without a broad set of
parameters to search over it is unlikely that we will find a
set that is close to the real world. Furthermore, without an
effective search algorithm we will be unlikely to effectively
identify the correct set of parameters even if the search space
is guaranteed to contain a good set of parameters.

1) Efficiency: The first core property of our approach
is its efficiency. For the purposes of our test, we define
efficiency by the number of nodes that can be processed

in a given time. Based on this metric we measure the
speed of adding a new node as the set of nodes increases
linearly. As can be seen in Figure |[5(a) our approach scales
logarithmically with the size of the graph. This means that
we can cover an exponentially larger search space than other
linear domain randomization tools making the probability
that we encounter a good set of parameters exponentially
greater as well.

This efficiency is furthered by looking at the number
of edges that are actually evaluated. The reason for this
efficiency is because there is an inverse relationship with
the size of the graph and the number of edges that need to
be explored in order to produce a good approximation of the
nearest neighbors (and thus the closest set of parameters).

2) Effectiveness: The second core property of our ap-
proach is its effectiveness. This effectiveness can be defined
as how well our algorithm finds simulators that closely ap-
proximate the best possible simulators available in the graph.
This metric is important to understand as this effectiveness
underpins the entire ability of our approach to identify a
good set of parameters when confronted with real data.
In order to evaluate this effectiveness we search the entire
set of simulators observed before in a brute force fashion,
testing every possible pair of simulators and returning those
that perform best thus eventually finding the optimal set of
simulators.

When compared with this brute force method our ap-
proach, while it does become worse as the size of the graph
increases, achieves very good results and those that are
significantly better than a random selection suggesting that
we have statistical significant results. These results overall
paint a picture of a very high success rate of 90% as good
as the theoretically optimal brute force.

The significance of these results is further emphasized
by the sheer improvement over a random search. Random
search is, for all intents and purposes, the standard domain
randomization algorithm. Typically in domain randomization
a curated or random selection of environmental parameters



is chosen to help the policy become closer to the real world.
Our results demonstrate that these random selections become
exponentially less useful than our approach as the size of the
graph increases. This is a very significant finding as it shows
the power of increasing the search space when it is able to
be searched effectively.

Furthermore, this test against random selection serves to
identify the difficulty of the problem being solved. If a
random selection produces good results then there is no need
for a complex algorithm as all produced sets of simulation
parameters will perform good enough. However, this is not
the case. Due to the great diversity in the simulations tested
we are able to ensure that at least some of those parameters
will be close to the real world. While this comes at the
expense of being a more difficult problem to solve, our
approach is able to mitigate that issue and ensure a high
level of performance. This performance suggests that our
approach, for all intents and purposes will be good enough to
identify very high quality simulators if given a representative
set of data.

Fig. 6. Transfer of our forward gait policy with a gait trained on on
an automatically tuned simulator. The bottom figure pictures the gait on
our baseline hand-tuned simulator and the top figure shows the real robot
successfully moving forward using a policy trained using our approach.

B. Results in the Real World

Our results in the evaluation of the algorithm, however,
are not as important as how well our approach translates to
real robots. As such, we tested the robot defined in Section
[ in the manner described in Section [V-D} We collected 4
distinct datasets in order to provide a broad coverage for the
robot and the algorithm.

When tested the robot was able to use the automatically
tuned simulators to find a gait 100% of the time, transfer-
ring to the real world successfully as shown on Figure [6]
This result alone strongly indicates that this task we were
attempting to solve was not trivial and the appropriate tuning
of the simulator was critical to its success.

Furthermore, when gaits were tuned on simulators with
parameters automatically detected by our algorithm their
gaits achieve scores similar to that of gaits generated in

an identical fashion as described in Section [[V-D] but by
using a hand tuned simulator. The main difference here is
in the time needed to collect the 1000 datapoints necessary
to automatically tune the simulator was around ten minutes
versus the countless hours needed to manually tune the
simulator to closely approximate the complex dynamics of a
real robot.

VI. FUTURE WORKS

While this work represents a significant step in the search
for efficient simulation tuning for real robots there is still
much work to be done. We limited our approach to randomiz-
ing elements about the robot however there is also significant
work that can be done applying the same technology to the
world itself. Many robots struggle to transfer to complex
and difficult environments and using a similar technology to
adaptively train the robot to better deal with new terrains
based on situations in which it fails could be a powerful
application of this work.

Furthermore, this technology could also be applied to the
rapid prototyping of robots. If instead of using a variety
of simulators to tune the robot one instead used a variety
of robot morphologies it would be possible to efficiently
identify which robot morphologies are similar to each other.
Through this identification one could leverage the datasets
or the dynamics models of those identified morphologically
similar robots to speed up the process by which the dynamics
model on the new robot is learned. Such a work would
need to identify how to effectively transfer knowledge from
one morphology to another but could, for all intents and
purposes, use our framework for identifying similar body
configurations to do much of the work.

VII. CONCLUSION

In this work we present a fully developed and deployment
ready algorithm for automatically tuning a simulator in a data
driven fashion making use of the power of Deep Learning
to model the dynamics of a robotic system. Our approach is
both efficient and effective allowing us to consider param-
eters from tens of thousands of robots even with relatively
low computation power.

Through this approach we seek to give researchers the
power to leverage techniques previously available to large
labs and institutions with access to boundless compute
resources. By presenting an incredibly scalable algorithm
that allows researchers to automatically produce a gait from
a robot without any tuning of the simulator behind it we
present a way for an individual with a single desktop
computer to save many hours that would have otherwise been
spent in the arduous task of tuning and tweaking a simulator
to properly represent a robot.
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